OceanRAIN Release 2.0 User Manual

Christian Klepp

www.christianklepp.com Where Geoscience Meets Art info@christianklepp.com

30 JUN 2020

Table of Content

OceanRAIN release 2.0	01
Data Records	08
Usage Notes	13
Software to read the OceanRAIN 2.0 Data	15
References	22

Abstract

OceanRAIN—the Ocean Rainfall And Ice-phase precipitation measurement Network—provides in-situ along-track shipboard data of precipitation, evaporation and the resulting freshwater flux at 1-min resolution over the global oceans from June 2010 to December 2018. More than 11.6 million minutes with 82 parameters from 8 ships cover all routinely measured atmospheric and oceanographic state variables along with those required to derive the turbulent heat fluxes. The precipitation parameter is based on measurements of the optical disdrometer ODM470 specifically designed for all-weather shipboard operations. The rain, snow and mixed-phase precipitation occurrence, intensity and accumulation are derived from particle size distributions. Additionally, microphysical parameters and radar-related parameters are provided. Addressing the need for high-quality in-situ precipitation data over the global oceans, OceanRAIN-2.0 is the first comprehensive along-track in-situ water cycle surface reference dataset for satellite product validation and retrieval calibration of the GPM (Global Precipitation Measurement) era, to improve the representation of precipitation and air-sea interactions in re-analyses and models, and to improve understanding of water cycle processes over the global oceans. This manual provides an overview on the dataset, gives guidelines on how to read and use the different datasets and file formats.

OceanRAIN release 2.0

OceanRAIN release 2.0 (OR2) covers the time period from 10 JUN 2010 to 31 DEC 2018 for eight ships, among them seven research vessels and one luxury cruise liner. The OceanRAIN release 1.0 (OR1) data volume of 6.830.365 minutes increased to 11.629.390 minutes in OR2 that corresponds to a factor of 1.7 data increase. The precipitation minutes therein increased from 696.740 to 1.102.777, corresponding to a factor of 1.6 data increase. The OR2 dataset comprises 8.047.595 true-zero minutes that are minutes with measured precipitation absence. The 1.102.777 minutes with precipitation split into 698.362 with rain, 339.031 with snow and 65.384 with mixed-phase precipitation. A total of

871.947 minutes could not be measured due to a malfunction of the ODM470 optical disdrometer and during 1.607.071 minutes the ships were in harbor with no GPS and MET data recording.

Seven new radar-related parameters are added to the OR2 database including a complete reprocessing of the OR1 data. This additional work exceeds the scope of the contract, however, it was decided to be an important step, as the S-Band radar data and the inclusion of the one-way attenuation for all four radar bands was highly demanded by the international science community working with the OceanRAIN data.

The OR2 data set authors are Christian Klepp, Alain Protat, Jörg Burdanowitz, Simon Michel, Nicole Albern, Valentin Louf, Andrea Dahl, Tanja Thiele and Marc Schroeder.

Table 1 provides a detailed overview on the data contribution and time period covered for the individual ships to the entire database including the data increase factor compared to OceanRAIN release 1.0.

Ship name	Start OP1	Stop OB1	Dale Start OP2	Stop OP2	OP1	Ninutes	Adds
	STALLORI	SLOP OKI	Start UKZ	Stop OK2	UKI	UKZ	LOOKI
Polarstern	10.06.2010	02.11.2016	03.11.2016	31.12.2018	3.264.480	4.400.527	x 1.4
Sonne 2	28.11.2014	10.04.2017	11.04.2017	31.12.2018	1.245.592	2.152.797	x 1.7
Sonne 1	11.09.2012	05.10.2012	no add data	no add data	36.0000	36.0000	x 1.0
Maria Merian	24.10.2012	10.06.2014	01.05.2017	31.12.2018	856.229	1.734.628	x 2.0
Meteor	17.03.2014	20.03.2016	21.03.2016	26.03.2017	1.058.400	1.591.614	x 1.5
Investigator	08.01.2016	04.03.2017	16.03.2017	20.05.2018	303.144	624.430	x 2.1
The World	16.01.2017	05.02.2017	05.02.2017	31.12.2018	29.081	1.013.082	x 34.8
Roger Revelle	22.08.2016	16.09.2016	19.10.2017	14.11.2017	37.439	76.312	x 2.0
All ships	JUN 2017	APR2017	MAR 2016	DEC 2018	6.830.365	11.629.390	x 1.7

Table 1: Temporal and percentage data contribution of the OceanRAIN 2.0 ships. The total number ofprocessed records in the data set comprises 11.629.390 minutes.

The extended shipyard repair period of Maria S. Merian caused a long data gap between OR1 and OR2. All other ships have continuous data transitions between OR1 and OR2. The large amount of Meteor data reduced to an end data of 26 MAR 2017 because the optical system of the ODM470 gradually failed and stopped recording meaningful data by March 2017. The luxury cruise liner The World added a significant amount of new data to OR2. However, this ship is not equipped with professional scientific instrumentation and only delivers the air temperature, relative humidity, air pressure and GPS data. However, the ODM470 data from this ship is adding new ship tracks in regions previously uncovered. Table 2 gives an overview on the individual ship contribution of total minutes recorded to number of minutes with no precipitation (true-zero data), rain, snowfall, mixed-phase precipitation as well as minutes with no ODM data recorded and minutes where the ships were in harbor and did not collect GPS and MET data.

Ship name	Minutes	Minutes	Minutes	Minutes	Minutes	Minutes	Minutes	Minutes
	total	true-zero	precip	rain	snow	mixed	no ODM	harbor
Polarstern	4.400.527	2.732.514	626.486	255.259	317.481	53.746	316.233	725.294
Sonne 2	2.152.797	1.647.653	122.548	121.813	719	16	84.960	297.636
Sonne 1	36.0000	31.418	4.582	4.582	0	0	0	0
Maria Merian	1.734.628	1.020.179	130.550	121.062	4.587	4.901	301.574	282.325
Meteor	1.591.614	1.251.708	39.272	38.033	150	1.089	0	300.634
Investigator	624.430	510.619	84.569	65.158	15.004	4.407	28.060	1.182
The World	1.013.082	811.287	60.675	58.360	1.090	1.225	141.120	0
Roger Revelle	76.312	42.232	34.080	34.080	0	0	0	0
All ships	11.629.390	8.047.595	1.102.777	698.362	339.031	65.384	871.947	1.607.071

Table 2: Total data contribution and precipitation data contribution of the OceanRAIN 2.0 ships.

Table 3 provides an overview on the precipitation occurrence for each individual ship. It is easily seen which ships predominantly sail the seas in precipitation-dominant and precipitation-sparse regions. The highest precipitation percentage of 44.7% comes from Roger Revelle. This few campaign data was collected in the inner tropics of the Pacific Ocean with the aim of chasing tropical rain cells. Polarstern cruises the mid and high latitudes most of the time and thus shows a high precipitation occurrence of 22.9%. In contrast, Meteor shows a precipitation occurrence of only 3.1% due to its tracks predominantly sailed in the precipitation-sparse subtropical oceans. Averaged over all ships the precipitation occurrence yields 13.7%.

Ship name	Precipitation
	occurrence
Polarstern	22.9%
Sonne 2	7.4%
Sonne 1	14.6%
Maria Merian	12.8%
Meteor	3.1%
Investigator	16.6%
The World	7.5%
Thompson	no data
Roger Revelle	44.7%
All ships	13.7%

Table 3 : Precipitation occurrence in OceanKAIN 2.0
--

Figure 1 displays the timeline from June 2010 to December 2018 for all eight OR2 ships in the fleet. Green data lines comprise successfully checked underway data, blue data indicate times when the ODM 470 data could not be recorded while red data denotes harbor times when no GPS signal and MET data was recorded because the recording devices were under maintenance.

Fig 1: Timeline of OceanRAIN 2.0 for all 8 ships in the fleet. Green data points comprise successfully checked underway data, blue data points indicate ODM 470 data outages (no precipitation data) while red data points denote harbor times when no GPS signal was recorded and the recording devices were under maintenance.

Figure 2 shows the OR2 ships tracks for all eight ships separated for data contributions from OR1 (blue) and the new tracks added in OR2. Polarstern cruises on pre-defined supply tracks that leave few freedom for new legs. However, Polarstern went to the Antarctic Pacific Ocean for the first time. Sonne II is adding a significant amount of new data in the tropical and subtropical Pacific Ocean and also adds new tracks in the Atlantic Ocean. Moreover, the Indian Ocean is covered for the first time. Maria S. Merian remained in the Atlantic Ocean for most of the time and adds significant new data in the northern high latitudes. Meteor sailed the Atlantic and Eastern Pacific including hitherto unsailed tracks. Investigator encircled Australia and went to the Antarctic. Roger Revelle added new data from the tropical SPURS cruise chasing tropical rain cells. Sonne I was discarded and replaced by Sonne II, so no new data contributes to OR2. However, the OR1 data was recalculated to include the seven new radar parameters. The Word adds a significant amount of new data cruising the Atlantic and Pacific Oceans. The Word also traversed the subtropical Pacific.

Fig. 2: OR2 shiptracks for all 8 ships in the fleet separated for tracks recorded during OR1 (blue) and OR2 (red). The data new to release 2.0 is denoted in red.

The ship tracks of Figure 2 are summarized for all ships in Figure 3 to Figure 6. Figure 3 shows the ship tracks of OR2 color-coded for the individual ships. The oceanic coverage increased significantly over OR1 (not shown here). Figure 4 separates the data into seasons in which the data was sampled. Figure 5 separates for the years in which the data was sampled while Figure 6 shows the precipitation phase with true-zero data in grey, rain in red, snowfall in blue and mixed-phase precipitation in green. Additionally, ODM data outage periods are visualized in yellow. Note, that most Southern Ocean data is sampled during the austral summer with the exception of the Polarstern cruise in 2013 when the ship remained in Antarctic waters throughout the year.

RV Investigator MS The World RV Sonne I RV Sonne II RV Roger Reveile RV Meteor RV Polarstern RV Maria S. Merian

Fig 3: Ship Tracks of OR2 color-coded for the individual ships. The oceanic coverage increased significantly over OR1 (not shown here).

Fig 4: Ship Tracks of OR2 as in Fig. 3 but separated for season in which the data was sampled.

Fig 5: Ship Track for OR2 separated for the years in which the data was sampled.

Fig 6: Ship Track for OR2 separated for the precipitation phase. Additionally, ODM data outage periods are visualized in yellow.

New Parameters in OceanRAIN 2.0

The demand of the international science community for additional radar-related parameters let to the decision to include the S-Band frequency at 2-4 GHz as well as the one-way attenuation for the hitherto included radar bands (Table 4). This is adding seven parameters to OceanRAIN 2.0 and is increasing the total number of parameters to 82. Thereof 80 are contained in OceanRAIN-W files while the other two are contained in the OceanRAIN-M and OceanRAIN-R files and comprise the 128 bins of the 1-min particle size distributions for the number concentration and the raw drop count of the ODM470 disdrometer.

To guarantee consistency with respect to the number of parameters, the entire OceanRAIN 1.0 database was reprocessed to now also include the seven new parameters within release OceanRAIN 2.0.

The atmospheric one-way attenuation (ATT) is primarily due to water vapor absorption lines and is very significant in many spectral regions in the millimeter wavelengths and is impacted differently by weather conditions such as fog, rain, snow and humidity. Table 4 lists the parameters that are now provided using the pyTmatrix tool developed by Leinonen.

		1	
Parameters	Radar Band	Radar Frequency	Radar Wavelength
T-matrix simulation of reflectivity from DSD	S-Band	2-4 GHz	15-7.5 cm
T-matrix simulation of differential reflectivity from DSD	C-band	5.6 GHz	7.5-3.75 cm
T-matrix simulation of specific differential phase from DSD	Ku-band	13.6 GHz	2.5-1.76 cm
T-matrix simulation of specific one-way attenuation from DSD	Ka-Band	35 GHz	1.11 cm – 7.5 mm

Table 4: Radar parameter list in OceanRAIN 2.0 data. New parameters are highlighted bold.

Data Records

OceanRAIN provides users with three dataset versions (OceanRAIN-W, OceanRAIN-M, OceanRAIN-R) for each of the eight ships in the OceanRAIN fleet. The aim is that users can choose the dataset version that best meets their research needs. The along-track point data covers the global oceans from -90° to 90°N latitude and -180° to 180°E longitude from 10 June 2010 to 31 December 2018.

The file name convention for the OR2 netCDF data is as follows: Data subset –W, -M or –R followed by the ship name, ship code, data period covered and the publisher institutions with the appendix version 2.0.

OceanRAIN-M_MS-The-World_C6RW4_JAN2017-DEC2018_DWD-MPIM_V2_0.nc OceanRAIN-M_RV-Investigator_VLMJ_JAN2016-MAY2018_DWD-MPIM_V2_0.nc OceanRAIN-M_RV-Maria-S-Merian_DBBT_OCT2012-DEC2018_DWD-MPIM_V2_0.nc OceanRAIN-M_RV-Meteor_DBBH_MAR2014-DEC2018_DWD-MPIM_V2_0.nc OceanRAIN-M_RV-Polarstern_DBLK_JUN2010-DEC2018_DWD-MPIM_V2_0.nc OceanRAIN-M_RV-Roger-Revelle_KAOU_AUG2016-DEC2017_DWD-MPIM_V2_0.nc OceanRAIN-M_RV-Sonnel_DFCG_SEP2012-OCT2012_DWD-MPIM_V2_0.nc OceanRAIN-M_RV-Sonnel_DBBE_NOV2014-DEC2018_DWD-MPIM_V2_0.nc

OceanRAIN-R_MS-The-World_C6RW4_JAN2017-DEC2018_DWD-MPIM_V2_0.nc OceanRAIN-R_RV-Investigator_VLMJ_JAN2016-MAY2018_DWD-MPIM_V2_0.nc OceanRAIN-R_RV-Maria-S-Merian_DBBT_OCT2012-DEC2018_DWD-MPIM_V2_0.nc OceanRAIN-R_RV-Meteor_DBBH_MAR2014-DEC2018_DWD-MPIM_V2_0.nc OceanRAIN-R_RV-Polarstern_DBLK_JUN2010-DEC2018_DWD-MPIM_V2_0.nc OceanRAIN-R_RV-Roger-Revelle_KAOU_AUG2016-DEC2017_DWD-MPIM_V2_0.nc OceanRAIN-R_RV-Sonnel_DFCG_SEP2012-OCT2012_DWD-MPIM_V2_0.nc OceanRAIN-R_RV-Sonnel_DFCG_SEP2012-OCT2012_DWD-MPIM_V2_0.nc

OceanRAIN-W_MS-The-World_C6RW4_JAN2017-DEC2018_DWD-MPIM_V2_0.nc OceanRAIN-W_RV-Investigator_VLMJ_JAN2016-MAY2018_DWD-MPIM_V2_0.nc OceanRAIN-W_RV-Maria-S-Merian_DBBT_OCT2012-DEC2018_DWD-MPIM_V2_0.nc OceanRAIN-W_RV-Meteor_DBBH_MAR2014-DEC2018_DWD-MPIM_V2_0.nc OceanRAIN-W_RV-Polarstern_DBLK_JUN2010-DEC2018_DWD-MPIM_V2_0.nc OceanRAIN-W_RV-Roger-Revelle_KAOU_AUG2016-DEC2017_DWD-MPIM_V2_0.nc OceanRAIN-W_RV-Sonnel_DFCG_SEP2012-OCT2012_DWD-MPIM_V2_0.nc OceanRAIN-W_RV-Sonnell_DBBE_NOV2014-DEC2018_DWD-MPIM_V2_0.nc

The ascii files follow the same name convention logic with the suffix .ascii:

OceanRAIN-M_MS-The-World_C6RW4_JAN2017-DEC2018.ascii OceanRAIN-M_RV-Investigator_VLMJ_JAN2016-MAY2018.ascii OceanRAIN-M_RV-Maria-S-Merian_DBBT_OCT2012-DEC2018.ascii OceanRAIN-M_RV-Meteor_DBBH_MAR2014-DEC2018.ascii OceanRAIN-M_RV-Polarstern_DBLK_JUN2010-DEC2018.ascii OceanRAIN-M_RV-Roger-Revelle_KAOU_AUG2016-DEC2017.ascii OceanRAIN-M_RV-Sonnel_DFCG_SEP2012-OCT2012.ascii OceanRAIN-M_RV-Sonnell_DBBE_NOV2014-DEC2018.ascii

OceanRAIN-R_MS-The-World_C6RW4_JAN2017-DEC2018.ascii OceanRAIN-R_RV-Investigator_VLMJ_JAN2016-MAY2018.ascii OceanRAIN-R_RV-Maria-S-Merian_DBBT_OCT2012-DEC2018.ascii OceanRAIN-R_RV-Meteor_DBBH_MAR2014-DEC2018.ascii OceanRAIN-R_RV-Polarstern_DBLK_JUN2010-DEC2018.ascii OceanRAIN-R_RV-Roger-Revelle_KAOU_AUG2016-DEC2017.ascii OceanRAIN-R_RV-Sonnel_DFCG_SEP2012-OCT2012.ascii OceanRAIN-R_RV-Sonnel_DBBE_NOV2014-DEC2018.ascii

OceanRAIN-W_MS-The-World_C6RW4_JAN2017-DEC2018.ascii OceanRAIN-W_RV-Investigator_VLMJ_JAN2016-MAY2018.ascii OceanRAIN-W_RV-Maria-S-Merian_DBBT_OCT2012-DEC2018.ascii OceanRAIN-W_RV-Meteor_DBBH_MAR2014-DEC2018.ascii OceanRAIN-W_RV-Polarstern_DBLK_JUN2010-DEC2018.ascii OceanRAIN-W_RV-Roger-Revelle_KAOU_AUG2016-DEC2017.ascii OceanRAIN-W_RV-Sonnel_DFCG_SEP2012-OCT2012.ascii OceanRAIN-W_RV-Sonnell_DBBE_NOV2014-DEC2018.ascii

The files were produced at the Max Planck Institute for Meteorology, Hamburg, Germany and are hosted at the German Meteorological Service in Offenbach, Germany.

The OceanRAIN-W contains the 1-minute resolution water cycle components of evaporation, precipitation and the freshwater flux along with all meteorological and oceanographic state variables required to derive these fluxes. The dataset is continuous in time and contains 82 parameters and more than 11.6 million minutes of data (Table 5). Typical applications for OceanRAIN-W comprise process studies and statistical analysis as well as satellite validation and re-analysis or model evaluation. OceanRAIN point data can serve as the surface reference and can be collocated with satellite or model data to analyse and improve their error characteristics. Therefore, it is important to highlight that the RVs sampled on the global oceans during all seasons including the cold-season Southern Oceans.

OceanRAIN-M and OceanRAIN-R focus on minutes containing precipitation and are therefore discontinuous in time. Both datasets comprise 44 precipitation-relevant parameters plus the 128 size bin number concentration PSDs (OceanRAIN-M) and raw number count PSDs (OceanRAIN-R) for 1.102.777 minutes in total with rain, snow or mixed-phase precipitation (Table 6). The precipitation-related parameters are identical in the three versions of the dataset. Applications for these datasets especially comprise satellite retrieval performance evaluation for liquid and solid precipitation. For this purpose, OceanRAIN-M and OceanRAIN-R supply the user with a convective versus stratiform

precipitation classification and contain the main PSD characteristics and the radar reflectivities at important frequencies for radar rainfall studies. This is of special importance for users aiming at TRMM, CloudSat and GPM product and retrieval validation because these satellite missions carry spaceborne radars.

# Parameter description OceanRAIN-W	NAME	Error value	Units	Data source	Format, Algorithm, Metadata, Citation			
01 counter	COUNT		[]	calculated				
02 date UTC	DATE		UTC	NAV	DDMOYYYY			
03 time UTC	TIME		UTC	NAV	ННММ			
04 date local	LDATE		LT	calculated	DDMOYYYY			
05 time local	LTIME		LT	calculated	ННММ			
06 minute of day UTC	MDAY		[]	calculated	value range 1 to 1440			
07 Julian date	JLD		days	calculated	since 01JAN1994, 00 UTC			
08 Unix epoch timestamp	USEC		S	calculated	seconds since 01JAN1970, 00 UTC			
09 latitude	LAT	-99,9999	deg	NAV	degree north from -90 to 90°			
10 longitude	LON	-999,9999	deg	NAV	degree east from -180° to 180°			
11 heading	HEAD	-99,9	deg	NAV	0° to 360°			
12 air temperature	TAIR	-99,9	°C	MET				
13 dewpoint temperature	TDEW	-99,9	°C	calculated				
14 bulk water temperature	WATER	-99,9	°C	MET				
15 sea surface temperature	SST	-99,9	°C	calculated	Donlon et al. ⁹¹			
16 relative humidity	RH	-99	%	MET				
17 specific humidity at sea surface	QS	-9,9	g kg-1	calculated	Murphy and Coop ⁹⁰			
18 specific air humidity	QA	-9,9	g kg-1	calculated	Murphy and Coop90			
19 air pressure	MSLP	-999,9	hPa	MET	at instrument height			
20 relative wind speed	UREL	-9,9	m s⁻¹	MET	+			
21 relative wind direction	RELDIR	-99	deg	MET				
22 true wind speed	UTRUE	-9,9	m s ⁻¹	MET				
23 true wind direction	TRUEDIR	-99	deg	MET				
24 wind speed in 10 m height	U10	-9,9	m s ⁻¹	calculated	Tennekes ⁸⁹			
25 global radiation	GLORAD	-999,9	W m ⁻²	MET				
26 visibility	VIS	-9999	m	MET				
27 ceiling	CEIL	-99999	m	MET				
28 max gusts	UMAX	-99,9	m s⁻¹	MET				
29 salinity	SAL	-99,99	PSU	MET				
30 drag transfer coefficient	CD	-99,9	[]	calculated	Fairall et al. ⁸⁸			
31 latent heat transfer coefficient	CE	-99,9	[]	calculated	Fairall et al. ⁸⁸			
32 sensible heat transfer coefficient	СН	-99,9	[]	calculated	Fairall et al. ⁸⁸			
33 warm layer flag	WLF	3	[]	calculated	Fairall et al. ⁸⁸			
34 sensible heat flux	SHF	-9999	W m ⁻²	calculated	Fairall et al. ⁸⁸			
35 latent heat flux	LHF	-9999	W m ⁻²	calculated	Fairall et al. ⁸⁸			

Table 5: Parameter list of OceanRAIN-W data.

37 Trelawet budget E-PBUDG999mn h1calculateddifference of E and P38 rain gauge precipitation rateGAUGE995.90mm h1METMET40 W1 past weather codeWW99[1SNNhuman weather type observation40 W1 past weather codeWI99.99[1SNNhuman weather type observation42 W2 past weather codeWI99.99mm h2calculated#43 or #44 is dentical to #5243 throaction rain rate disconneterTRAIN999.99mm h2calculated#43 or #44 is dentical to #5244 throaction store rate disconneterTRAIN999.99[1calculated#43 or #44 is dentical to #5245 probability for rainPRAIN999.99[1calculatedwale range 0.00 to 1.0046 probability for rainePRAIN999.99[1calculatedvalue range 0.00 to 1.0047 probability for rainePRAIN999.99[1calculatedvalue range 0.00 to 1.0046 probability for rainePRAIN999.99[1calculatedpropipation type and status50 number of particlesNUMS999.99[1calculatedcalculated51 number of particlesNUMS999.99[1calculatedcalculated53 number of particlesNUMS999.99[1calculatedcalculated54 raits are statusNUMS999.99[1calculatedcalculated53 number of particlesNUMS999.99[1calculated	36 evaporation E	EVAP	-999	mm h ⁻¹	calculated	Fairall et al. ⁸⁸
Bit am gauge precipitation rate GAUGE 996.99 mm h ⁻⁴ MET Metro 39 we procent worther code WW 99 [] SNN human worther type observation 40 W1 pust worther code W1 99 [] SNN human worther type observation 41 W2 pust worther code W1 99 [] SNN human worther type observation 42 U2 put percentile particle diameter PERC 999.99 mm h ⁻¹ calculated #45 or #44 is identical to #52 44 theoretical anion rate diadometer TANN 999.99 mm h ⁻¹ calculated walke range 0.00 to 1.00 44 theoretical anion rate diadometer TANN 999.99 [] calculated walke range 0.00 to 1.00 47 probability for mixed phase PMAK 999.99 [] calculated walke range 0.00 to 1.00 47 probability for mixed phase PMAK 999.99 [] calculated precipitation distallation 50 number of barticles ND/S 999.99 [] calculated precipitation distallation 51 number of particles ND/S 999.99 [] calculated precipitation distallation 52 oDM precipitation flag DD/R 989.99 III Coll calculated <td>37 freshwater budget E-P</td> <td>BUDG</td> <td>-999</td> <td>mm h⁻¹</td> <td>calculated</td> <td>difference of E and P</td>	37 freshwater budget E-P	BUDG	-999	mm h ⁻¹	calculated	difference of E and P
39 ww present weather code WW -99 I 5YA human weather type observation 40 W1 past weather code W1 -99 II 5YA human weather type observation 41 W2 past weather code W2 -99 III SYA human weather type observation 42 W2 past weather code W2 -99 III calculated #44 or #44 is identical to #52 43 theoretical rain rate disdometer TRAIN -99.99 mm h ⁻¹ calculated #44 or #44 is identical to #52 44 theoretical rain rate disdometer TRAIN -99.99 mm h ⁻¹ calculated value range 0.00 to 100 45 probability for rain PRAIN -99.99 II calculated value range 0.00 to 100 46 probability for mance phase PMAX -99.99 II calculated value range 0.00 to 100 47 probability for mance phase PMAX -99.99 II calculated value range 0.00 to 100 48 precipitation flag1 FAG2 99 II Calculated precipitation disatistican 50 number of bins BinS -99.99 III ODM number of bins 51 along R DBR -99.99 mm h ⁻¹ calculated 52 and park partition ratin P	38 rain gauge precipitation rate	GAUGE	-99,99	mm h ⁻¹	MET	
40 W1 path weather code W1 -99 11 57N human weather type observation 41 W2 path weather code W2 -99 11 57N human weather type observation 42 99b percentic particle diumeter PERC -999,99 mm calculated #13 or #84 is identical to #32 41 W1 path weather code TRAN -999,99 mm h ⁻¹ calculated #14 or #84 is identical to #32 44 theoretical intow rate diadrometer TRAN -999,99 11 calculated walke range 0.00 to 1.00 44 procipitation flag1 FMG2 9 11 calculated value range 0.00 to 1.00 44 procipitation flag1 FMG2 9 11 calculated value range 0.00 to 1.00 44 procipitation flag1 FMG2 9 11 calculated value range 0.00 to 1.00 50 number of particles NUMS 999.99 11 calculated procipitation trace 51 number of particles NUMS 9999 11 ODM number of bans 54 holog R DRR 99.99 dRR calculated recordin accordin to 424.8 55 lolog Z </td <td>39 ww present weather code</td> <td>ww</td> <td>-99</td> <td>[]</td> <td>SYN</td> <td>human weather type observation</td>	39 ww present weather code	ww	-99	[]	SYN	human weather type observation
41 W2 past weather rade W2 99 [1] SW human weather type observation 42 99th percentile particle diameter PERC 995,99 mm calculated 443 or #44 is identical to #52 43 theoretical rain rate diadometer TRAIN 999,99 mm h ⁻¹ calculated 443 or #44 is identical to #52 44 theoretical room rate diadometer TSNOW 999,99 [1] calculated value range 0.00 to 1.00 44 probability for rained phase PMIX 999,99 [1] calculated value range 0.00 to 1.00 45 probability for mixed phase PMIX 999,99 [1] calculated value range 0.00 to 1.00 46 procleation fing1 FLAG 9 [1] calculated value range 0.00 to 1.00 46 procleation fing2 FLAG 99 [1] calculated value range 0.00 to 1.00 50 number of bins BINS 99 [1] calculated value range 0.00 to 1.00 51 number of particles BINS 999 [1] calculated resculated value 52 00 hg R DBR 99.99 mm h ⁻¹ calculated resculat	40 W1 past weather code	W1	-99	[]	SYN	human weather type observation
42 9th percentic particle diameterFEC990.9nmcalculatedH43 theoretical sinue rate diameterTRAN99.99mm h 1calculatedH43 or H44 is identical to H5244 theoretical sinue rate diameterTSNOW99.99IIcalculatedH43 or H44 is identical to H5244 theoretical sinue rate diameterFRAN999.99IIcalculatedValue range 0.00 to 1.0045 probability for mixed phasePMIX999.99IIcalculatedvalue range 0.00 to 1.0047 probability for mixed phasePMIX999.99IIcalculatedvalue range 0.00 to 1.0047 probability for mixed phasePMIX999.99IIcalculatedvalue range 0.00 to 1.0048 percipitation flag1FLAG19IIcalculatedvalue range 0.00 to 1.0050 number of birtisBIR599IIODMnumber of birtis51 number of particlesNUMS999.99IIIcalculatedaccording to H2-4852 0DM precipitation rate RPRECIP99.99mm h 1calculatedaccording to H2-4853 langle of particlesDBR99.99dBRcalculatedfig1 = 4 or 5; missuel = 99.9957 reference valtageUBEF88.88m s1ODMfig1 = 4 or 5; missuel = 99.9957 reference valtageUBEF88.88VODMfig1 = 4 or 5; missuel = 99.9958 convective 1/stratiform-0 indexCONV-9IIcalculatedfibural et a! ¹⁰ 59 intercept of normalized gam	41 W2 past weather code	W2	-99	[]	SYN	human weather type observation
43 Theoretical rain rate disformeter TRAN 99.99 mm h ⁻¹ calculated #43 or #44 is identical to #52 44 theoretical arow rate disformeter TSNOW 99.99 mm h ⁻¹ calculated #43 or #44 is identical to #52 45 probability for rain PRAIN 999.99 [1 calculated value range 0.00 to 1.00 46 probability for rain PRAIN 999.99 [1 calculated value range 0.00 to 1.00 47 probability for rain PRAIN 999.99 [1 calculated value range 0.00 to 1.00 48 precipitation flag1 FLAG1 9 [1 calculated precipitation type and status 49 precipitation flag2 FLAG2 99 [1 calculated precipitation tabutes 51 number of birs BINS 99.99 mm h ⁺¹ calculated according to #42.48 53 alkyleigh reflectivity Z REFL 99.99 mm h ⁺² calculated accounted 51 rubpe and status DBR 99.99 dBR calculated mm e ⁺¹ calculated 54 holog R DBR 99.99 dBR calculated mm e ⁺¹ c	42 99th percentile particle diameter	PERC	-999,99	mm	calculated	
44 Hocerkiel sow ate distrometerTNOW+939mm hcalculated#43 or #44 is identical to 45245 probability for nainePPAN4999.99[]calculatedvalue range 0.00 to 1.0046 probability for nained-placePNKW4995.99[]calculatedvalue range 0.00 to 1.0047 probability for med-placePMK4995.99[]calculatedvalue range 0.00 to 1.0048 precipitation flag1FLAG19[]calculatedprecipitation type and status49 precipitation flag2FLAG299[]calculatedprecipitation classification50 number of particlesNUMS-499.99mm h ⁻¹ calculatedaccording to 842-4851 number of particlesNUMS-499.99mm h ⁻¹ calculatedcalculated52 nDM precipitation rate RPRECP-49.99mm h ⁻¹ calculatedcalculated53 nayleigh reflectivity ZREFL-49.99mm h ⁻¹ calculatedcalculated54 10 tog KDBZ-49.99dBZcalculatedcalculated55 10 tog ZDDZ-49.99mm ⁻¹ calculatedmms-10.9956 reflative wind speedODMEIL48.88VODMflag1-4 or 5; missoal-99.9957 reference woltageUREF48.88VODMflag1-4 or 5; missoal-99.9958 convective-1 / stratiform-0 indexCOVV-4[]calculatedTestud et al. ³² 59difference voltageUREF48.88VODMflag1-4	43 theoretical rain rate disdrometer	TRAIN	-99,99	mm h ⁻¹	calculated	#43 or #44 is identical to #52
45 probability for rain PANN -999,99 [] calculated value range 0.00 to 1.00 46 probability for now PSNW -999,99 [] calculated value range 0.00 to 1.00 47 probability for now PSNW -999,99 [] calculated value range 0.00 to 1.00 48 precipitation flag1 FLAG1 9 [] calculated precipitation type and status 49 precipitation flag2 FLAG2 99 [] calculated number of bins 51 number of particles NUMS -999 [] ODM number of particles 52 0DM precipitation rate R PRECIP -99,99 dBg calculated according to H42-48 53 Ray(reigh reflectivity Z REFL -99,99 dBg calculated Termere value 51 log Z DBR -99,99 dBg Calculated Thurs i et al.*1 57 reference value UREF -88,88 V DOM flag1 = 4 or 5; missyol = -99.99 58 convective -1 / stratificam -1 flag. DN* -999 mm* *** <t< td=""><td>44 theoretical snow rate disdrometer</td><td>TSNOW</td><td>-99,99</td><td>mm h⁻¹</td><td>calculated</td><td>#43 or #44 is identical to #52</td></t<>	44 theoretical snow rate disdrometer	TSNOW	-99,99	mm h ⁻¹	calculated	#43 or #44 is identical to #52
4E probability for snow PSNOW -999,99 [1 calculated value range 0.00 to 1.00 47 probability for mixed phase PMIX -999,99 [1] calculated value range 0.00 to 1.00 48 precipitation flag1 FLAG1 9 [1] calculated precipitation to 1.00 49 precipitation flag2 FLAG2 99 [1] calculated precipitation dassification 50 number of particles NUMS -999 [1] ODM number of bins 51 number of particles NUMS -999 mm ¹⁺¹ calculated according to f42-48 52 0DM precipitation rate R PRECIP -99,99 mm ¹⁺¹ calculated calculated 51 10 log Z DBR -99,99 dBR calculated calculated 55 10 log Z DDR -99,99 dBR calculated calculated 57 reference wortage UREF -88,88 V ODM flag1-4 or 5; missval=-99.99 50 norschere I Artatiform=O mdex CONV -9 [1] calculated Testud et al. ¹² 58 on vacchere I Artatiform=O mdex CONV -9 [1] calculated Testud et al. ¹² 59 intercept of normalized gamma DSD No* -999 mm ² ma	45 probability for rain	PRAIN	-999,99	[]	calculated	value range 0.00 to 1.00
47 probability for mixed-phase PMIX -999,99 [] calculated value range 0.00 to 1.00 48 precipitation flag1 FLAG1 9 [] calculated precipitation dassification 50 number of bins BINS -99 [] ODM number of bins 51 number of particles NUMS -999.90 [] ODM number of bins 52 DDM precipitation rate R PRECIP -99,99 mm ⁴ m ⁻³ calculated according to 842-48 52 DLM precipitation rate R DBR -99,99 dBR calculated according to 842-48 54 10 log R DBR -99,99 dBR calculated according to 842-48 55 10 log Z DBZ -99,99 dBZ calculated Tururi at all of x or <-16.5 * 0m + 6.35	46 probability for snow	PSNOW	-999,99	[]	calculated	value range 0.00 to 1.00
48 precipitation flag1 FLAG1 9 [1 calculated precipitation type and status 49 precipitation flag2 FLAG2 99 [1 calculated precipitation classification 50 number of bins BINS -99 [1 ODM number of bins 51 number of particles NUMS -999.99 [1] ODM number of particles 52 ODM precipitation rate R PRECIP -99.99 mm ⁺ n ⁻¹ calculated according to 842-48 53 Rayleigh reflectivity Z REFL -99.99 dBR calculated intervention 55 L0 log Z DBZ -99.99 dBR calculated intervention 55 L0 log Z DDM Rlag1=4 or 5; missual=-99.99 57 reference voltage UREF -88.88 m s ⁻¹ ODM flag1=4 or 5; missual=-99.99 58 convective=1 /stratiform=0 index CONV -9 [1] calculated Testud et al. ¹⁰ 60 mass-weighted mean diameter of normalized gamma No* -999 mm ⁻¹ calculated Testud et al. ¹⁰ 61 materiza gamma DSD Co .999 mm ⁻¹ calculated <td< td=""><td>47 probability for mixed-phase</td><td>PMIX</td><td>-999,99</td><td>[]</td><td>calculated</td><td>value range 0.00 to 1.00</td></td<>	47 probability for mixed-phase	PMIX	-999,99	[]	calculated	value range 0.00 to 1.00
49 precipitation flag2FLAG299[]calculatedprecipitation dassification50 number of binsBINS-99[]ODMnumber of bins51 number of particlesNUMS-9999[]ODMnumber of particles52 ODM precipitation rate RPRCIP-99,99mm h calculatedaccording to 442.4853 Rayleigh reflectivity ZREFL-99,99dBRcalculated54 10 log RDBR-99,99dBRcalculated55 10 log ZDBZ-99,99dBZcalculated56 relative wind speedODMREL-88,88m s^1ODMflag1=4 or 5; missval=-99,9957 reference voltageUREF-88,88VODMflag1=4 or 5; missval=-99,9958 convective-1 /stratiform-0 indexCONV-9[]calculatedThurai et al. ¹⁰ , No* <-1.65 * Dm +	48 precipitation flag1	FLAG1	9	[]	calculated	precipitation type and status
50 number of bins BINS -99 [] ODM number of bins 51 number of particles NUMS -9999 [] ODM number of particles 52 ODM precipitation rate R PRECP -99,99 mm ^s m ³ Calculated according to #42-48 53 Rayleigh reflectivity Z REFL -99,99 dBR Calculated	49 precipitation flag2	FLAG2	99	[]	calculated	precipitation classification
S1 number of particles NUMS -9999 [] ODM number of particles 52 ODM precipitation rate R PRECIP -99,99 mm h ⁻¹ calculated according to M42-48 53 Rayleigh reflectivityZ REFL -99,99 mm ⁴ m ⁻³ calculated . 54 100 g R DBR -99,99 dBR calculated . 55 101 og Z DBZ -99,99 dBR calculated . 56 relative wind speed ODMREL -88,88 m s ⁻¹ ODM flag1=4 or 5; missval=-99,99 57 reference voltage UREF -88,88 V ODM flag1=4 or 5; missval=-99,99 58 convective=1 /stratiform=0 index CONV -9 [] calculated Testud et al. ⁹⁷ , No* <-1.65 * Dm + 6.35 59 Intercept of normalized gamma No* -999 mm ⁻¹ m ⁻¹ calculated Testud et al. ⁹⁷ 60 mass weighted mean diameter of normalized gamma DSD Do -999 mm calculated Testud et al. ⁹² 61 shape parameter of normalized gamma DSD mu -999 mm calculated Williams et al. ⁹⁴ 63 DSD mass spectrum standard differental reflectivity from DSD DBZ_S -999 dBZ calculated pyTmatrix 64 Intercept param	50 number of bins	BINS	-99	[]	ODM	number of bins
12 ODM precipitation rate R PRECIP -99,99 mm h ⁺ calculated according to #42-48 53 Rayleigh reflectivity Z REFL -99,99 mm ⁺ m ⁻³ calculated 54 10 log R DBR -99,99 dBR calculated 55 10 log Z DBZ -99,99 dBZ calculated 56 relative wind speed ODMREL -88,88 m s ⁻¹ ODM flag1=4 or 5; missval=-99.99 57 reference voltage URFF -88,88 V ODM flag1=4 or 5; missval=-99.99 58 convective=1 /stratiform=0 index CONV -9 [] calculated Testud et al. ³² 59 Intercept of normalized gamma No* -999 mm ⁻¹ m ⁻³ calculated Testud et al. ³² 61 shape parameter of normalized gamma DSD Dm -999 mm calculated Testud et al. ⁴² 62 median volume diameter of normalized gamma DSD D0 -999 mm calculated Testud et al. ⁴² 63 DSD mass spectrum standard sigmam -999 mm ⁻¹ m ⁻³ calculated Tokay and Short ⁴¹ 64 Intercept parameter of a standard performance DR -999 mm ⁻¹ m ⁻³ calculated pyTmatrix 65 T-matrix simulation of S-band standard perfor	51 number of particles	NUMS	-9999	[]	ODM	number of particles
S3 Rayleigh reflectivity Z REFL 99,99 mm ² m ³ calculated 54 10 log R DBR 99,99 dBR calculated 55 10 log Z DBZ 99,99 dBZ calculated 55 10 log Z DBZ 99,99 dBZ calculated 56 relative wind speed ODMREL 88.88 m s ⁻¹ ODM flag1= 4 or 5; missual=-99.99 57 reference voltage UREF 88.88 V ODM flag1= 4 or 5; missual=-99.99 58 convective=1 /stratiform=0 index CONV -9 [1] calculated Testud et al. ¹² 60 mass-weighted mean diameter of normalized gamma DSD Dm -999 mm ⁴ m ⁻³ calculated Testud et al. ¹² 61 shape parameter of normalized gamma DSD mu -999 mm ⁴ calculated Testud et al. ¹² 63 DSD mass spectrum standard detain volume diameter of normalized gamma DSD isgmam -999 mm ⁴ m ⁻³ calculated Williams et al. ¹⁴⁴ 64 Intercept parameter of a standard gamma DSD BZC_S -999 mm ⁴ m ⁻³ calculated py/matrix 66 T-matrix simulation of S-band genetiti simulation of S-band genetiti simulatiti	52 ODM precipitation rate R	PRECIP	-99,99	mm h ⁻¹	calculated	according to #42-48
54 10 log R DBR /99,99 dBR calculated 55 10 log Z DBZ -99,99 dBZ calculated 56 relative wind speed ODMREL -88,88 m s ⁻¹ ODM flag1= 4 or 5; missval= -99,99 57 reference voltage UREF -88,88 V ODM flag1= 4 or 5; missval= -99,99 58 convective=1/stratiform=0 index CONV -9 [] calculated Testud et al. ¹² 59 Intercept of normalized gamma No* -999 mm ¹ m ⁻³ calculated Testud et al. ¹² 60 mass-weighted mean diameter of normalized gamma DSD DD -999 [] calculated Testud et al. ¹² 61 shape parameter of normalized gamma DSD DD -999 mm calculated Testud et al. ¹² 62 median volume diameter of normalized gamma DSD DD -999 mm calculated Testud et al. ¹² 63 DSD mass spectrum standard dievation sigmam -999 mm ¹ m ⁻³ calculated Tokay and Short ⁸³ 64 Intercept parameter of a standard gamma DSD DBZ_S -999 dBZ calculated pyTmatrix 65 T-matrix simulation of S-band specific differential reflectivity from DSD DBZ_S -999 dBZ calculated pyTmatrix <	53 Rayleigh reflectivity Z	REFL	-99,99	mm ⁶ m ⁻³	calculated	
S5 10 log Z DBZ -99,99 dBZ calculated 56 relative wind speed ODMREL -38,88 m s ⁻¹ ODM flag1= 4 or 5; missval= -99.99 57 reference voltage UREF -38,88 V ODM flag1= 4 or 5; missval= -99.99 58 convective=1 /stratiform=0 index CONV -9 [] calculated Thurai et al. ⁸ , No* < -1.65 * Dm + 6.35	54 10 log R	DBR	-99,99	dBR	calculated	
56 relative wind speed ODMREL -88,88 m s ⁻¹ ODM flag1= 4 or 5; missval= -99.99 57 reference voltage UREF -88,88 V ODM flag1= 4 or 5; missval= -99.99 58 convective=1 /stratiform=0 index CONV -9 [] calculated Thural et al. ⁸⁷ , No* < -1.65 * Dm + 6.35 59 intercept of normalized gamma DSD No* -999 mm ⁻¹ m ⁻³ calculated Testud et al. ⁸² 60 mass-weighted mean diameter of normalized gamma DSD Dm -999 mm calculated Testud et al. ⁸² 61 shape parameter of normalized gamma DSD DO -999 mm calculated Testud et al. ⁸² 63 DSD mass spectrum standard deviation Sigmam -999 mm ⁻¹ m ⁻³ calculated Williams et al. ⁸⁴ 64 Intercept parameter of a standard reflectivity from DSD N0 -999 mm ⁻¹ m ⁻³ calculated pyTmatrix 65 T-matrix simulation of S-band specific one-way attenuation from DSD ZDR_S -999 dBZ calculated pyTmatrix 68 T-matrix simulation of S-band specific one-way attenuation from DSD DBZ_C -999 dB calculated pyTmatrix 6	55 10 log Z	DBZ	-99,99	dBZ	calculated	
57 reference voltage UREF -88,88 V ODM flag1=4 or 5; missval=-99.99 58 convective=1 /stratiform=0 index CONV -9 [] calculated Thurai et al. ⁸² , No* < -1.65 * Dm + 6.35	56 relative wind speed	ODMREL	-88,88	m s ⁻¹	ODM	flag1= 4 or 5; missval= -99.99
58 convective=1/stratiform=0 index CONV -9 [] calculated Thurai et al. ⁸² , No* < -1.65 * Dm + 6.35	57 reference voltage	UREF	-88,88	V	ODM	flag1= 4 or 5; missval= -99.99
59 Intercept of normalized gamma DSD No* -999 mm ⁻¹ m ⁻³ calculated Testud et al. ⁸² 60 mass-weighted mean diameter of normalized gamma DSD Dm -999 mm calculated Testud et al. ⁸² 61 shape parameter of normalized gamma DSD mu -999 [] calculated Testud et al. ⁸² 62 median volume diameter of normalized gamma DSD D0 -999 mm calculated Testud et al. ⁸² 63 DSD mass spectrum standard deviation sigmam -999 mm ⁻¹ m ⁻³ calculated Williams et al. ⁸⁴ 64 Intercept parameter of a standard gamma DSD DBZ_S -999 dBZ calculated pyTmatrix 65 F-matrix simulation of S-band differential reflectivity from DSD DBZ_S -999 dBZ calculated pyTmatrix 68 T-matrix simulation of S-band specific one-way attenuation from DSD ATT_S -999 dBZ calculated pyTmatrix 70 T-matrix simulation of C-band DSD DBZ_C -999 dBZ calculated pyTmatrix 71 T-matrix simulation of C-band DSD DBZ_C	58 convective=1 /stratiform=0 index	CONV	-9	[]	calculated	Thurai et al. ⁸² , No* < -1.65 * Dm + 6.35
00 mass-weighted mean diameter of normalized gamma DSD Dm -999 mm calculated Testud et al. ⁸² 61 shape parameter of normalized gamma DSD mu -999 [] calculated Testud et al. ⁸² 62 median volume diameter of normalized gamma DSD D0 -999 mm calculated Testud et al. ⁸² 63 DSD mass spectrum standard deviation sigmam -999 mm calculated Williams et al. ⁸⁴ 64 Intercept parameter of a standard deviation sigmam -999 mm ⁻¹ m ⁻³ calculated Tokay and Short ⁸³ 65 T-matrix simulation of S-band ZDR_S -999 dBZ calculated pyTmatrix 66 T-matrix simulation of S-band ZDR_S -999 dB calculated pyTmatrix 67 T-matrix simulation of S-band SP CDP_S -999 dB km ⁻¹ calculated pyTmatrix 68 T-matrix simulation of S-band SP CDP_S -999 dB km ⁻¹ calculated pyTmatrix 69 T-matrix simulation of C-band SP DBZ_C -999 dB km ⁻¹ calculated pyTmatrix <td>59 Intercept of normalized gamma</td> <td>No*</td> <td>-999</td> <td>mm⁻¹ m⁻³</td> <td>calculated</td> <td>Testud et al.⁸²</td>	59 Intercept of normalized gamma	No*	-999	mm ⁻¹ m ⁻³	calculated	Testud et al. ⁸²
61 shape parameter of normalized gamma DSD mu -999 [1] calculated Testud et al. ⁸² 62 median volume diameter of normalized gamma DSD D0 -999 mm calculated Testud et al. ⁸² 63 DSD mass spectrum standard deviation sigmam -999 mm calculated Williams et al. ⁸⁴ 64 Intercept parameter of a standard gamma DSD N0 -999 mm ¹ m ³ calculated Tokay and Short ⁸³ 65 T-matrix simulation of S-band differential reflectivity from DSD DBZ_S -999 dBZ calculated pyTmatrix 66 T-matrix simulation of S-band differential reflectivity from DSD ZDR_S -999 dBg calculated pyTmatrix 67 T-matrix simulation of S-band specific differential phase from DSD KDP_S -999 dB km ⁻¹ calculated pyTmatrix 68 T-matrix simulation of C-band specific one-way attenuation from DSD DBZ_C -999 dB km ⁻¹ calculated pyTmatrix 70 T-matrix simulation of C-band specific one-way attenuation from DSD ZDR_C -999 dB calculated pyTmatrix 71 T-matrix simulation of C-band specific one-way attenuation from DSD ZDR_C -999 dB km ⁻¹ c	60 mass-weighted mean diameter of normalized gamma DSD	Dm	-999	mm	calculated	Testud et al. ⁸²
2DescriptionD0-999mmcalculatedTestud et al. ⁸² 63DSDsigmam-999mmcalculatedWilliams et al. ⁸⁴ 64Intercept parameter of a standard gamma DSDN0-999mm ⁻¹ m ⁻³ calculatedTokay and Short ⁸³ 64Intercept parameter of a standard gamma DSDDBZ_S-999dBZcalculatedpyTmatrix65T-matrix simulation of S-band reflectivity from DSDDBZ_S-999dBZcalculatedpyTmatrix66T-matrix simulation of S-band specific differential reflectivity from DSDKDP_S-999deg km ⁻¹ calculatedpyTmatrix67T-matrix simulation of S-band specific differential phase from DSDATT_S-999dB km ⁻¹ calculatedpyTmatrix68T-matrix simulation of C-band DSDDBZ_C-999dBZcalculatedpyTmatrix70T-matrix simulation of C-band differential reflectivity from DSDDBZ_C-999dBZcalculatedpyTmatrix70T-matrix simulation of C-band specific one-way attenuation from DSDZDR_C-999dBcalculatedpyTmatrix71T-matrix simulation of C-band specific one-way attenuation from DSDKDP_C-999dB km ⁻¹ calculatedpyTmatrix72T-matrix simulation of C-band specific one-way attenuation from DSDKDP_C-999dB km ⁻¹ calculatedpyTmatrix73T-matrix simulation of Ku-band reflectivity from DSDDBZ_Ku <td>61 shape parameter of normalized gamma DSD</td> <td>mu</td> <td>-999</td> <td>[]</td> <td>calculated</td> <td>Testud et al.⁸²</td>	61 shape parameter of normalized gamma DSD	mu	-999	[]	calculated	Testud et al. ⁸²
G3DSDmassspectrumstandard deviationsigmam-999mmcalculatedWilliams et al.8464Intercept parameter of a standard gamma DSDN0-999mm ¹ m ⁻³ calculatedTokay and Short ⁸³ 65T-matrixSimulation of S-band differential reflectivity from DSDDBZ_S-999dBZcalculatedpyTmatrix66T-matrix simulation of S-band differential reflectivity from DSDZDR_S-999dBcalculatedpyTmatrix67T-matrix simulation of S-band specific differential phase from DSDKDP_S-999deg km ⁻¹ calculatedpyTmatrix68T-matrix simulation of S-band specific one-way attenuation from DSDDBZ_C-999dB km ⁻¹ calculatedpyTmatrix70T-matrix simulation of C-band specific one-way attenuation for DSDDBZ_C-999dBZcalculatedpyTmatrix71T-matrix simulation of C-band specific one-way attenuation from DSDDD-999dBcalculatedpyTmatrix71T-matrix simulation of C-band specific differential phase from DSDKDP_C-999deg km ⁻¹ calculatedpyTmatrix72T-matrix simulation of C-band specific differential phase from DSDDBZ_Lu-999dBZcalculatedpyTmatrix73T-matrix simulation of Ku-band specific differential reflectivity from DSDDBZ_Lu-999dBZcalculatedpyTmatrix73T-matrix simulation of Ku-band reflectivity from DSD<	62 median volume diameter of normalized gamma DSD	D0	-999	mm	calculated	Testud et al. ⁸²
ControlDescriptionDescriptionDescriptionDescriptionDescriptionDescription65T-matrix simulation of S-band reflectivity from DSDDBZ_S-999dBZcalculatedpyTmatrix66T-matrix simulation of S-band differential reflectivity from DSDZDR_S-999dBcalculatedpyTmatrix67T-matrix simulation of S-band specific differential phase from DSDKDP_S-999deg km ⁻¹ calculatedpyTmatrix68T-matrix simulation of S-band specific one-way attenuation from DSDATT_S-999dB km ⁻¹ calculatedpyTmatrix69T-matrix simulation of C-band differential reflectivity from DSDDBZ_C-999dB km ⁻¹ calculatedpyTmatrix70T-matrix simulation of C-band specific differential phase from DSDZDR_C-999dBcalculatedpyTmatrix71T-matrix simulation of C-band specific differential phase from DSDZDR_C-999dBcalculatedpyTmatrix71T-matrix simulation of C-band specific differential phase from DSDKDP_C-999dB km ⁻¹ calculatedpyTmatrix71T-matrix simulation of C-band specific differential phase from DSDATT_C-999dB km ⁻¹ calculatedpyTmatrix73T-matrix simulation of Ku-band DSDDBZ_Ku-999dB km ⁻¹ calculatedpyTmatrix73T-matrix simulation of Ku-band reflectivity from DSDDBZ_Ku-999dBcalculatedpyTmatrix <td>63 DSD mass spectrum standard</td> <td>sigmam</td> <td>-999</td> <td>mm</td> <td>calculated</td> <td>Williams et al.⁸⁴</td>	63 DSD mass spectrum standard	sigmam	-999	mm	calculated	Williams et al. ⁸⁴
gamma DSDDBZ_S-999dBZcalculatedpyTmatrix66 T-matrix simulation of S-band differential reflectivity from DSDZDR_S-999dBcalculatedpyTmatrix66 T-matrix simulation of S-band specific differential phase from DSDZDR_S-999dBcalculatedpyTmatrix67 T-matrix simulation of S-band specific differential phase from DSDATT_S-999dB km ⁻¹ calculatedpyTmatrix68 T-matrix simulation of S-band specific one-way attenuation from DSDATT_S-999dB km ⁻¹ calculatedpyTmatrix70 T-matrix simulation of C-band differential reflectivity from DSDDBZ_C-999dBZcalculatedpyTmatrix70 T-matrix simulation of C-band differential reflectivity from DSDZDR_C-999dBcalculatedpyTmatrix71 T-matrix simulation of C-band specific one-way attenuation from DSDXDP_C-999dB km ⁻¹ calculatedpyTmatrix72 T-matrix simulation of C-band specific differential phase from DSDATT_C-999dB km ⁻¹ calculatedpyTmatrix73 T-matrix simulation of Ku-band DSDDBZ_Ku-999dB km ⁻¹ calculatedpyTmatrix73 T-matrix simulation of Ku-band reflectivity from DSDDBZ_Ku-999dBcalculatedpyTmatrix74 T-matrix simulation of Ku-band differential reflectivity from DSDZDR_Ku-999dBcalculatedpyTmatrix74 T-matrix simulation of Ku-band differential reflectivity from DSDZDR_Ku-999	64 Intercept parameter of a standard	N0	-999	mm ⁻¹ m ⁻³	calculated	Tokay and Short ⁸³
Tentectivity from DSDZDR_S-999dBcalculatedpyTmatrix66T-matrix simulation of S-band specific differential phase from DSDKDP_S-999deg km ⁻¹ calculatedpyTmatrix67T-matrix simulation of S-band specific one-way attenuation from DSDKDP_S-999deg km ⁻¹ calculatedpyTmatrix68T-matrix simulation of S-band specific one-way attenuation from DSDATT_S-999dB km ⁻¹ calculatedpyTmatrix69T-matrix simulation of C-band reflectivity from DSDDBZ_C-999dBZcalculatedpyTmatrix70T-matrix simulation of C-band differential reflectivity from DSDZDR_C-999dBcalculatedpyTmatrix71T-matrix simulation of C-band specific one-way attenuation from DSDKDP_C-999deg km ⁻¹ calculatedpyTmatrix71T-matrix simulation of C-band specific one-way attenuation from DSDATT_C-999dB km ⁻¹ calculatedpyTmatrix72T-matrix simulation of C-band specific one-way attenuation from DSDDBZ_Ku-999dB km ⁻¹ calculatedpyTmatrix73T-matrix simulation of Ku-band reflectivity from DSDDBZ_Ku-999dBZcalculatedpyTmatrix74T-matrix simulation of Ku-band differential reflectivity from DSDZDR_Ku-999dBcalculatedpyTmatrix	65 T-matrix simulation of S-band	DBZ_S	-999	dBZ	calculated	pyTmatrix
differential reflectivity from DSDKDP_S-999deg km ⁻¹ calculatedpyTmatrix67T-matrix simulation of S-band specific one-way attenuation from DSDATT_S-999dB km ⁻¹ calculatedpyTmatrix68T-matrix simulation of C-band reflectivity from DSDATT_S-999dB km ⁻¹ calculatedpyTmatrix69T-matrix simulation of C-band reflectivity from DSDDBZ_C-999dBZcalculatedpyTmatrix70T-matrix simulation of C-band differential reflectivity from DSDZDR_C-999dBcalculatedpyTmatrix71T-matrix simulation of C-band specific differential phase from DSDKDP_C-999deg km ⁻¹ calculatedpyTmatrix72T-matrix simulation of C-band specific differential phase from DSDATT_C-999dB km ⁻¹ calculatedpyTmatrix72T-matrix simulation of C-band specific one-way attenuation from DSDDBZ_Ku-999dBZcalculatedpyTmatrix73T-matrix simulation of Ku-band DSDDBZ_Ku-999dBZcalculatedpyTmatrix74T-matrix simulation of Ku-band differential reflectivity from DSDZDR_Ku-999dBcalculatedpyTmatrix	66 T-matrix simulation of S-band	ZDR_S	-999	dB	calculated	pyTmatrix
specific differential phase from DSDATT_S-999dB km ⁻¹ calculatedpyTmatrix68 T-matrix simulation of S-band specific one-way attenuation from DSDATT_S-999dB km ⁻¹ calculatedpyTmatrix69 T-matrix simulation of C-band offferential reflectivity from DSDDBZ_C-999dBZcalculatedpyTmatrix70 T-matrix simulation of C-band differential reflectivity from DSDZDR_C-999dBcalculatedpyTmatrix71 T-matrix simulation of C-band specific differential phase from DSDKDP_C-999deg km ⁻¹ calculatedpyTmatrix72 T-matrix simulation of C-band specific one-way attenuation from DSDATT_C-999dB km ⁻¹ calculatedpyTmatrix73 T-matrix simulation of Ku-band DSDDBZ_Ku-999dBZcalculatedpyTmatrix74 T-matrix simulation of Ku-band differential reflectivity from DSDZDR_Ku-999dBcalculatedpyTmatrix	differential reflectivity from DSD 67 T-matrix simulation of S-band	KDP_S	-999	deg km ⁻¹	calculated	pyTmatrix
specific one-way attenuation from DSDDBZ_C-999dBZcalculatedpyTmatrix69 T-matrix simulation of C-band reflectivity from DSDDBZ_C-999dBZcalculatedpyTmatrix70 T-matrix simulation of C-band differential reflectivity from DSDZDR_C-999dBcalculatedpyTmatrix71 T-matrix simulation of C-band 	specific differential phase from DSD 68 T-matrix simulation of S-band	ATT S	-999	dB km ⁻¹	calculated	pyTmatrix
69T-matrix simulation of C-band reflectivity from DSDDBZ_C-999dBZcalculatedpyTmatrix70T-matrix simulation of C-band differential reflectivity from DSDZDR_C-999dBcalculatedpyTmatrix71T-matrix simulation of C-band specific differential phase from DSDKDP_C-999deg km ⁻¹ calculatedpyTmatrix72T-matrix simulation of C-band 	specific one-way attenuation from DSD					
70T-matrix simulation of C-band differential reflectivity from DSDZDR_C-999dBcalculatedpyTmatrix71T-matrix simulation of C-band specific differential phase from DSDKDP_C-999deg km ⁻¹ calculatedpyTmatrix72T-matrix simulation of C-band specific one-way attenuation from DSDATT_C-999dB km ⁻¹ calculatedpyTmatrix73T-matrix simulation of Ku-band DSDDBZ_Ku-999dBZcalculatedpyTmatrix74T-matrix simulation of Ku-band differential reflectivity from DSDZDR_Ku-999dBcalculatedpyTmatrix	69 T-matrix simulation of C-band reflectivity from DSD	DBZ_C	-999	dBZ	calculated	pyTmatrix
71 T-matrix simulation of C-band specific differential phase from DSD KDP_C -999 deg km ⁻¹ calculated pyTmatrix 72 T-matrix simulation of C-band specific one-way attenuation from DSD ATT_C -999 dB km ⁻¹ calculated pyTmatrix 73 T-matrix simulation of Ku-band reflectivity from DSD DBZ_Ku -999 dBZ calculated pyTmatrix 74 T-matrix simulation of Ku-band differential reflectivity from DSD ZDR_Ku -999 dB calculated pyTmatrix	70 T-matrix simulation of C-band differential reflectivity from DSD	ZDR_C	-999	dB	calculated	pyTmatrix
72 T-matrix simulation of C-band specific one-way attenuation from DSD ATT_C -999 dB km ⁻¹ calculated pyTmatrix 73 T-matrix simulation of Ku-band reflectivity from DSD DBZ_Ku -999 dBZ calculated pyTmatrix 74 T-matrix simulation of Ku-band differential reflectivity from DSD ZDR_Ku -999 dB calculated pyTmatrix	71 T-matrix simulation of C-band specific differential phase from DSD	KDP_C	-999	deg km ⁻¹	calculated	pyTmatrix
73 T-matrix simulation of Ku-band reflectivity from DSD DBZ_Ku -999 dBZ calculated pyTmatrix 74 T-matrix simulation of Ku-band differential reflectivity from DSD ZDR_Ku -999 dB calculated pyTmatrix	72 T-matrix simulation of C-band specific one-way attenuation from DSD	ATT_C	-999	dB km ⁻¹	calculated	pyTmatrix
74 T-matrix simulation of Ku-band ZDR_Ku -999 dB calculated pyTmatrix differential reflectivity from DSD	73 T-matrix simulation of Ku-band reflectivity from DSD	DBZ_Ku	-999	dBZ	calculated	pyTmatrix
	74 T-matrix simulation of Ku-band differential reflectivity from DSD	ZDR_Ku	-999	dB	calculated	pyTmatrix

75 T-matrix simulation of Ku-band specific differential phase from DSD	KDP_Ku	-999	deg km ⁻¹	calculated	pyTmatrix
76 T-matrix simulation of Ku-band specific one-way attenuation from DSD	ATT_Ku	-999	dB km ⁻¹	calculated	pyTmatrix
77 T-matrix simulation of Ka-band reflectivity from DSD	DBZ_Ka	-999	dBZ	calculated	pyTmatrix
78 T-matrix simulation of Ka-band differential reflectivity from DSD	ZDR_Ka	-999	dB	calculated	pyTmatrix
79 T-matrix simulation of Ka-band specific differential phase from DSD	KDP_Ka	-999	deg km ⁻¹	calculated	pyTmatrix
80 T-matrix simulation of Ka-band specific one-way attenuation from DSD	ATT_Ka	-999	dB km ⁻¹	calculated	pyTmatrix

Table 6 lists all 172 parameters in the OR2 OceanRAIN-M (microphysical properties) and OceanRAIN-R (raw drop count data) files that comprise of the 1-min resolution temporally discontinuous particle size distributions.

# Parameter description	NAMAT	S ummer and the	11-the	Data	Format,
OceanRAIN-M and OceanRAIN-R	NAIVIE	Error value	Units	source	Algorithm, Metadata, Citation
01 counter	COUNT		[]	calculated	
02 date UTC	DATE		UTC	NAV	DDMOYYYY
03 time UTC	TIME		UTC	NAV	ннмм
04 minute of day UTC	MDAY		[]	calculated	value range 1 to 1440
05 Julian date	JLD		days	calculated	since 01JAN1994, 00 UTC
06 Unix epoch timestamp	USEC		s	calculated	seconds since 01JAN1970, 00 UTC
07 latitude	LAT	-99,9999	deg	NAV	degree north from -90 to 90°
08 longitude	LON	-999,9999	deg	NAV	degree east from - 180° to 180°
09 probability for rain	PRAIN	-999,99	[]	calculated	value range 0.00 to 1.00
10 probability for snow	PSNOW	-999,99	[]	calculated	value range 0.00 to 1.00
11 probability for mixed-phase	PMIX	-999,99	[]	calculated	value range 0.00 to 1.00
12 precipitation flag1	FLAG1	9	[]	calculated	precipitation type and status
13 precipitation flag2	FLAG2	99	[]	calculated	precipitation classification
14 number of bins	BINS	-99	[]	ODM	number of bins
15 number of particles	NUMS	-9999	[]	ODM	number of particles
16 ODM precipitation rate R	PRECIP	-99,99	mm h ⁻¹	calculated	according to #42- 48
17 Rayleigh reflectivity Z	REFL	-99,99	mm ⁶ m ⁻³	calculated	
18 10 log R	DBR	-99,99	dBR	calculated	
19 10 log Z	DBZ	-99,99	dBZ	calculated	
20 relative wind speed	ODMREL	-88,88	m s ⁻¹	ODM	flag1= 4 or 5; missval= -99.99
21 reference voltage	UREF	-88,88	v	ODM	flag1= 4 or 5; missval= -99.99
22 convective=1 /stratiform=0 index	CONV	-9	[]	calculated	Thurai et al. ⁸² , No* < -1.65 * Dm + 6.35
23 Intercept of normalized gamma DSD	No*	-999	mm ⁻¹ m ⁻³	calculated	Testud et al.82
24 mass-weighted mean diameter of normalized gamma DSD	Dm	-999	mm	calculated	Testud et al. ⁸²
25 shape parameter of normalized gamma DSD	mu	-999	[]	calculated	Testud et al.82
26 median volume diameter of normalized gamma DSD	D0	-999	mm	calculated	Testud et al. ⁸²

27 DSD mass spectrum standard deviation	sigmam	-999	mm	calculated	Williams et al.84
28 Intercept parameter of a standard gamma DSD	N0	-999	mm ⁻¹ m ⁻³	calculated	Tokay and Short ⁸³
29 T-matrix simulation of S-band reflectivity from DSD	DBZ_S	-999	dBZ	calculated	pyTmatrix
30 T-matrix simulation of S-band differential reflectivity from DSD	ZDR_S	-999	dB	calculated	pyTmatrix
31 T-matrix simulation of S-band specific differential phase from DSD	KDP_S	-999	deg km ⁻¹	calculated	pyTmatrix
32 T-matrix simulation of S-band specific one-way attenuation from DSD	ATT_S	-999	dB km ⁻¹	calculated	pyTmatrix
33 T-matrix simulation of C-band reflectivity from DSD	DBZ_C	-999	dBZ	calculated	pyTmatrix
34 T-matrix simulation of C-band differential reflectivity from DSD	ZDR_C	-999	dB	calculated	pyTmatrix
35 T-matrix simulation of C-band specific differential phase from DSD	KDP_C	-999	deg km ⁻¹	calculated	pyTmatrix
36 T-matrix simulation of C-band specific one-way attenuation from DSD	ATT_C	-999	dB km ⁻¹	calculated	pyTmatrix
37 T-matrix simulation of Ku-band reflectivity from DSD	DBZ_Ku	-999	dBZ	calculated	pyTmatrix
38 T-matrix simulation of Ku-band differential reflectivity from DSD	ZDR_Ku	-999	dB	calculated	pyTmatrix
39 T-matrix simulation of Ku-band specific differential phase from DSD	KDP_Ku	-999	deg km ⁻¹	calculated	pyTmatrix
40 T-matrix simulation of Ku-band specific one-way attenuation from DSD	ATT_Ku	-999	dB km ⁻¹	calculated	pyTmatrix
41 T-matrix simulation of Ka-band reflectivity from DSD	DBZ_Ka	-999	dBZ	calculated	pyTmatrix
42 T-matrix simulation of Ka-band differential reflectivity from DSD	ZDR_Ka	-999	dB	calculated	pyTmatrix
43 T-matrix simulation of Ka-band specific differential phase from DSD	KDP_Ka	-999	deg km ⁻¹	calculated	pyTmatrix
44 T-matrix simulation of Ka-band specific one-way attenuation from DSD	ATT_Ka	-999	dB km ⁻¹	calculated	pyTmatrix
45-172: 128-times number concentration PSD	PSD		m ⁻³ mm ⁻¹	calculated	OceanRAIN-M files
45-172: 128-times raw particle count PSD	RAW		n	ODM	OceanRAIN-R files

Table 6: Parameter list of OceanRAIN-M and OceanRAIN-R data. The –M denotes the microphysical parameters including the 128 bins of the number concentration particle size distributions per minute. The –R denotes the raw ODMdata parameters including the 128 bins of the raw particle count particle size distributions per minute.

Usage Notes

Users requiring surface reference data of precipitation including PSDs should use the OceanRAIN-M (number concentration PSD) or OceanRAIN-R (particle count PSD) files both of which are discontinuous in time. The continuous in time OceanRAIN-W data should be used if the true-zero precipitation information is needed or if additional meteorological and oceanographic parameters are required such as the along-track turbulent heat fluxes, the evaporation or the freshwater flux.

Usage of precipitation flags

Two precipitation flags are consistently used in all three versions of the dataset in order to discriminate the precipitation phase and intensity. Flag1 (Table 7) assigns a value for rainfall (0), snowfall (1), mixed-phase precipitation (2) or no precipitation (true zero) (3) to each minute. Note that the data records in the OceanRAIN-M and OceanRAIN-R files are discontinuous in time and thus contain precipitation minutes only. However, it is important to note, that very light precipitation may result in a precipitation rate of 0.00 mm h-1 (flag1=0, 1, 2) due to an insignificant number of particles measured. In contrast to these events, during true-zero precipitation occurrences in the OceanRAIN-W files (flag1=3), the

ODM470 relative wind speed and reference voltage is set to -888.88 in order to distinguish these minutes from the missing value (-999.99). Flag1 also indicates instrument outages with a value of 4 and harbour times with a value of 5.

Precipitation flag2 allows to further classify precipitation intensities (Table 8). True-zero minutes (flag1=3) correspond to flag2=10. Value 11 assigns spurious precipitation with less than 20 particles with less than 5 bins occupied. The associated insignificant precipitation rates may result from very light precipitation or strong vibration of the instrument resulting in artificial signals. The decision is left to the user whether to consider or discard these values. Value 12 contains all precipitation minutes with a rate of 0.00 mm h-1. Values of 13 to 17 indicate increasing precipitation rates according to Table 3.

Additionally, a physically-derived convective-stratiform precipitation index for rainfall is provided. Rayleigh reflectivities are provided for snow and mixed phase but should be treated with care. Due to the unknown liquid-to-solid ratio, mixed-phase precipitation carries the largest uncertainty and should therefore be treated with care, as well. Precipitation minutes that fail the quality check are either set to true-zero precipitation or instrument malfunction. Rejection reasons include interference by wave water, riming, icing, birds and maintenance. However, the original values can be tracked in the OceanRAIN-W dataset using the number of particles, number of bins and the theoretical rain and snowfall values.

	recipitation hage classification for precipitation types
Flag1	precipitation phase and ODM instrument condition
0	rainfall occurrence
1	snowfall occurrence
2	mixed-phase precipitation occurrence
3	true-zero value, no precipitation occurrence
4	inoperative instrument, no ODM data recorded
5	harbor time, no data recorded
9	missing value

Table 7: Precipitation flag1 classification for precipitation types

Table 8: Precipitation flag2 classification	for precipitation intensities.
---	--------------------------------

Flag2	classification	information
10	true-zero value,	No precipitation occurrence. Note, if allocated bins and
	no precipitation	numbers are not equal zero this minute was identified as an
		electronic artefact and the precipitation rate is set to zero.
11	spurious signals or	Precipitation occurrences with number of bins smaller to 5
	extremely light	and number of particles smaller to 20. The rates are
	precipitation	insignificant or zero. Reasons for such signals be include real
		precipitation, vibration of the instrument or any kind of
		artifacts. It is left to the user to consider these minutes as
		being precipitation or not.
12	insignificant precipitation	Precipitation rates lower than 0.01 mm h ⁻¹ are set to 0.00
	occurrence	mm h ⁻¹ . These are minutes with insignificant precipitation
		rates.
13	very light precipitation	Precipitation rates from 0.01 to 0.09 mm h ⁻¹ . The values are
	occurrence	below the threshold of what typical gauges are able to
		measure.

14	light	precipitation	Precipitation rates from 0.1 to 0.99 mm h ⁻¹ . The values are
	occurrence		above the threshold of what typical gauges are able to
			measure.
15	moderate	precipitation	Precipitation rates from 1.00 to 9.99 mm h ⁻¹ containing light
	occurrence		to moderate precipitation events. The stratiform-convective
			flag can be additionally used to separate these minutes.
16	intense	precipitation	Precipitation rates from 10.00 to 49.99 mm h ⁻¹ containing
	occurrence		intense, convective precipitation.
17	extreme	precipitation	Precipitation rates above 50 mm h ⁻¹ contain extreme
	occurrence		convective precipitation events.
99	missing value	!	missing data.

Software to read the OceanRAIN 2.0 Data

The software to read the ascii and netCDF data for the OceanRAIN-W, OceanRAIN-M and OceanRAIN-R files for each of the eight ships is supplied below in Fortran 95 code for the asci files and Python code for the netCDF data files.

program oceanrain-w_read IMPLICIT NONE

! author: Christian Klepp, www.christianklepp.com

integer :: ii,jj !do loops

! parameter declaration for OceanRAIN-W ascii file parameters integer :: day,month,year,time integer :: mmday ! minutes of day real(kind=8) :: kc ! julian date ! epoch time integer(kind=8) :: UTC integer :: rh, relDD, trueDD real :: lat, head, temp, dewt, wtemp, pres, relFF, trueFF real(kind=8) :: lon real :: rad1, maxFF, sal, gauge integer :: vis, ceil, ww, w1, w2 integer :: flag, flag2, c real :: perc99, train,tsnow,rpar,spar,mpar,precip,wind,uref integer :: bins, nums real :: refl,dbr,dbz

integer :: datelocal,timelocal integer :: dateUT,timeUT

real :: sst,qs,qa,wind10 real :: CD,CE,CH integer :: warmlayer real :: shf,lhf,evap,freshwater integer :: conv real :: n0star,dm,mu,d0,sigma,N0

real :: dbzs,zdrs,kdps,atts

real :: dbzc,zdrc,kdpc,attc real :: dbzku,zdrku,kdpku,attku real :: dbzka,zdrka,kdpka,attka

open(10,file="OceanRAIN-W_RV-Sonnel_DFCG_SEP2012-OCT2012.ascii") ! input file open(11,file="OceanRAIN-W_RV-Sonnel-your-needs.ascii") ! output file

do jj = 1,include-number-of-lines

! do whatever you require to do here

write(11,1000)c,dateUT,timeUT,datelocal,timelocal,mmday,kc,UTC,lat,lon,head,temp,dewt, & & wtemp,sst,rh,qs,qa,pres,relFF,relDD,trueFF,trueDD,wind10,rad1,vis,& & ceil,maxFF,sal,CD,CE,CH,warmlayer,shf,lhf,evap,freshwater,&

& gauge,ww,w1,w2,perc99,train,tsnow,&

& rpar, spar, mpar, flag, flag2, bins, nums, precip, refl, &

& dbr,dbz,wind,uref, & & conv,n0star,dm,mu,d0,sigma,N0, & & dbzs,zdrs,kdps,atts, & & dbzc,zdrc,kdpc,attc, & & dbzku,zdrku,kdpku,attku, & & dbzka,zdrka,kdpka,attka

enddo

end

program oceanrain-m_read IMPLICIT NONE

! author: Christian Klepp, www.christianklepp.com

integer :: ii,jj !do loops

! parameter declaration for OceanRAIN-M ascii file parameters

```
integer :: c,date,time,mmday
    real(kind=8) :: kc
    integer(kind=8) :: UTC
    real :: lat
    real(kind=8) :: lon
    real :: rpar,spar,mpar
    integer :: flag,flag2,bins,nums
    real :: precip,refl,dbr,dbz,wind,uref
real, dimension(128) :: precip_psd
```

! integer, dimension(128) :: precip_psd

integer :: conv real :: n0star,dm,mu,d0,sigma,N0

real :: dbzs,zdrs,kdps,atts real :: dbzc,zdrc,kdpc,attc real :: dbzku,zdrku,kdpku,attku real :: dbzka,zdrka,kdpka,attka

open(11,file='OceanRAIN-M_RV-Sonnel_DFCG_SEP2012-OCT2012.ascii') open(12,file='OceanRAIN-M_RV-Sonnel-your-needs.ascii')

read(11,*) ! if header line present overread it

do ii = 1,include-number-of-lines-1 ! n-1 substract header

read(11,*)c,date,time,mmday,kc,UTC,lat,lon, & & rpar,spar,mpar,flag,flag2,bins,nums, & & precip,refl,dbr,dbz,wind,uref, & & conv,n0star,dm,mu,d0,sigma,N0, & & dbzs,zdrs,kdps,atts, & & dbzc,zdrc,kdpc,attc, & & & dbzku,zdrku,kdpku,attku, & & & dbzka,zdrka,kdpka,attka, & & & precip_psd

! do whatever you require to do here

read(12,*)c,date,time,mmday,kc,UTC,lat,lon, & & rpar,spar,mpar,flag,flag2,bins,nums, & & precip,refl,dbr,dbz,wind,uref, & & conv,n0star,dm,mu,d0,sigma,N0, & & dbzs,zdrs,kdps,atts, & & dbzc,zdrc,kdpc,attc, & & & dbzku,zdrku,kdpku,attku, & & & dbzka,zdrka,kdpka,attka, & & & precip_psd

enddo

end

program oceanrain-r_read IMPLICIT NONE

! author: Christian Klepp, www.christianklepp.com

integer :: ii,jj !do loops

! parameter declaration for OceanRAIN-R ascii file parameters

integer :: c,date,time,mmday real(kind=8) :: kc integer(kind=8) :: UTC real :: lat real(kind=8) :: lon real :: rpar,spar,mpar integer :: flag,flag2,bins,nums real :: precip,refl,dbr,dbz,wind,uref

! real, dimension(128) :: precip_psd integer, dimension(128) :: precip_psd

integer :: conv real :: n0star,dm,mu,d0,sigma,N0

real :: dbzs,zdrs,kdps,atts real :: dbzc,zdrc,kdpc,attc real :: dbzku,zdrku,kdpku,attku real :: dbzka,zdrka,kdpka,attka

open(11,file='OceanRAIN-R_RV-Sonnel_DFCG_SEP2012-OCT2012.ascii')
open(12,file='OceanRAIN-R_RV-Sonnel-your-needs.ascii')

read(11,*) ! if header line present overread it

do ii = 1,include-number-of-lines-1 ! n-1 substract header

read(11,*)c,date,time,mmday,kc,UTC,lat,lon, & & rpar,spar,mpar,flag,flag2,bins,nums, & & precip,refl,dbr,dbz,wind,uref, & & conv,n0star,dm,mu,d0,sigma,N0, & & dbzs,zdrs,kdps,atts, & & dbzc,zdrc,kdpc,attc, & & & dbzku,zdrku,kdpku,attku, & & & dbzka,zdrka,kdpka,attka, & & & precip_psd

! do whatever you require to do here

read(12,*)c,date,time,mmday,kc,UTC,lat,lon, & & rpar,spar,mpar,flag,flag2,bins,nums, & & precip,refl,dbr,dbz,wind,uref, & & conv,n0star,dm,mu,d0,sigma,N0, & & dbzs,zdrs,kdps,atts, & & dbzc,zdrc,kdpc,attc, &

& dbzku,zdrku,kdpku,attku, & & dbzka,zdrka,kdpka,attka, & & precip_psd

enddo

end

-*- coding: utf-8 -*-

.....

Created on Wed Jun 24 11:11 2020

DESCRIPTION:

- List and load OceanRAIN files from FTP server
- Load and Explore data using puthon library xarray
- plot original time-series

.....

Load functions:import functions as fc# Load python modules:import osimport xarray as xr

```
# Initialize INPUT:
# ------
url = 'ftp.zmaw.de'
url_path = 'outgoing/klepp/netcdf/'
```

```
# List data files:
# ------
data,ftp = fc.list_data(url, url_path)
print(data)
```

Load the data from FTP:# ------# i:: num of single file in the data list to download

fc.download_data(ftp, data, i=5, download_all=False)

Move loaded files to data folder: os.system('mv *.nc ../data')

data_path = '../data/'
file = 'OceanRAIN-R_RV-Investigator_VLMJ_JAN2016-MAY2018_DWD-MPIM_V2_0.nc'
data = xr.open_dataset(data_path + file)

Print data base:
print(data)

Print time dimension:
print(data.time)

Get variable names: var_names = list(data.var())

Get data for one variable: var1 = data[var_names[10]]

Plot time-series for one variable: var1.plot(color='gray',marker='o',markerfacecolor='r')

netCDF Variables list:

OceanRAIN-W

namesList = ['count','date_UT','time_UT','local_date','local_time','minute_of_day','julian_date','time', 'latitude', 'longitude', 'heading', 'air_temperature', 'dew_point_temperature', 'bulkwater_temperature', 'sea_surface_temperature', 'relative humidity', 'specific_humidity_at_sea_surface', 'specific air humidity', 'air pressure', 'relative wind speed', 'relative wind direction', 'true wind speed', 'true wind direction', 'wind_speed_in_10m_height', 'global_radiation', 'visibility', 'ceiling', 'max_gusts', 'salinity', 'drag_transfer_coeff', 'lhf_transfer_coeff', 'shf transfer coeff', 'warm layer flag', 'sensible heat flux shf', 'latent heat flux lhf', 'evaporation', 'freshwater_budget', 'rain_gauge_precipitation_rate', 'ww_present_weather_code', 'W1_past_weather_code', 'W2_past_weather_code', 'particle_diameter_99th_percentile', 'theoretical_rain_rate_disdrometer', 'theoretical snow rate disdrometer', 'probability for rain', 'probability_for_snow', 'probability_for_mixed_phase', 'precip_flag', 'precip_flag2', 'number_of_bins', 'number_of_particles', 'ODM470_precipitation_rate_R', 'rayleigh_reflectivity_Z', 'dBR', 'dBZ', 'relative wind speed ODM470', 'reference voltage', 'convective stratiform index', 'intercept of normalized gamma', 'mass weighted mean diameter of normalized gamma', 'shape_parameter_of_normalized_gamma', 'median volume diameter of normalized gamma', 'mass spectrum standard deviation',

'intercept parameter of a standard gamma',

'S_band_reflectivity', 'S_band_differential_reflectivity', 'S_band_specific_differential_phase', 'S-band_specific_oneway_attenuation',

'C_band_reflectivity', 'C_band_differential_reflectivity', 'C_band_specific_differential_phase', 'C-band_specific_oneway_attenuation',

'Ku_band_reflectivity', 'Ku_band_specific_oneway_attenuation', 'Ku_band_specific_differential_phase', 'Ku-band_specific_oneway_attenuation',

'Ka_band_reflectivity', 'Ka_band_differential_reflectivity', 'Ka_band_specific_differential_phase', 'Ka-band_specific_oneway_attenuation']

OceanRAIN-R and OceanRAIN-M

namesList = ['count','date_UT', 'minute_of_day', 'julian_date', 'time', 'latitude', 'longitude', 'probability_for_rain', 'probability_for_snow', 'probability_for_mixed_phase', 'precip_flag', 'precip_flag2', 'number_of_bins', 'number_of_particles', 'ODM470_precipitation_rate_R', 'rayleigh_reflectivity_Z', 'dBR', 'dBZ', 'relative_wind_speed_ODM470', 'reference_voltage', 'convective_stratiform_index', 'intercept_of_normalized_gamma', 'mass_weighted_mean_diameter_of_normalized_gamma', 'shape parameter of normalized gamma', 'median_volume_diameter_of_normalized_gamma', 'mass_spectrum_standard_deviation', 'intercept parameter of a standard gamma', 'S_band_reflectivity', 'S_band_differential_reflectivity', 'S_band_specific_differential_phase', 'S-band specific oneway attenuation', 'C band reflectivity', 'C band differential reflectivity', 'C band specific differential phase', 'C-band specific oneway attenuation', 'Ku band reflectivity', 'Ku band differential reflectivity', 'Ku band specific differential phase', 'Ku-band specific oneway attenuation', 'Ka_band_differential_reflectivity', 'Ka band reflectivity', 'Ka_band_specific_differential_phase', 'Ka-band_specific_oneway_attenuation'] for i in range(1,129):

namesList.append("bin"+str(i))

References

A comprehensive documentation of the data set, the parameters, the processing chain, the optical disdrometer ODM470 and OceanRAIN overall can be obtained from published literature:

Klepp, C., Michel S., Protat, A., Burdanowitz J., Albern N., Dahl A., Kähnert M., Louf V., Bakan S. & Buehler, S.A. (2018). OceanRAIN, a new in-situ shipboard global ocean surface-reference dataset of all water cycle components. **Nature Scientific Data**, 5:180122 | DOI:10.1038/sdata.2018.122.

Klepp, C. (2015). The Oceanic Shipboard Precipitation Measurement Network for Surface Validation – OceanRAIN. **Atmos. Res**., Special issue of the International Precipitation Working Group, 163, 74-90, doi:10.1016/j.atmosres.2014.12.014.