COSMO-REA6 Startbeispiel

(zur Verwendung unter UNIX/Linux)

Zum

- 1. Herunterladen,
- 2. Entpacken,
- 3. Umwandeln in netcdf,
- 4. Darstellen und
- 5. Zuschneiden
- 6. Richtige Koordinaten selektieren

Am Beispiel der stündlichen 10m u-Komponente:

U_10M.2D.199501.grb.bz2

1. Herunterladen

Bei Verwendung unter UNIX/Linux Zugriff über die Konsole:

ftp opendata.dwd.de

Login mit user: anonymous; password: eigene Email-Adresse

cd climate environment/REA/COSMO REA6/hourly/2D/U 10M

get U_10M.2D.199501.grb.bz2

2. Entpacken

mit bzip2 (kann ein paar Sekunden/Minuten dauern):

bunzip2 U 10M.2D.199501.grb.bz2

3. Umwandeln in netcdf

Die Verwendung der Climate Data Operators (CDO) wird empfohlen, siehe [1] und [2].

cdo -f nc copy U 10M.2D.199501.grb U 10M.2D.199501.nc

4. Darstellung

Nach einer Umwandlung in netcdf lässt sich die Datei gut mit noview darstellen:

ncview U_10M.2D.199501.nc

Abbildung 1: Darstellung von U_10M.2D.199501.nc mit ncview und das zugehörige Menüfenster

Die Daten liegen in rotierten Koordinaten vor, ddaher ist im ncview Plot die Umrandung von Afrika zu sehen, siehe dünne weisse Linie in Abbildung 1. Die Umrandung kann in ncview ausgestellt werden: Über den Reiter *opts* (siehe rote Markierung) kann die Einstellung *overlays* auf *none* gesetzt werden.

5. Zuschneiden

Zuschneiden eines Rechteckes durch Auswahl des gewünschten Gebietes in den rotierten Koordinaten:

cdo selindexbox,300,500,350,550 U_10M.2D.199501.nc myselection_ U_10M.2D.199501.nc

Abbildung 2: Darstellung mittels ncview myselection_U10M.2D.199501.nc, hier sind die Küstenlinien ausgeschaltet und die Farbskala wurde über den Reiter *Range* angepasst; Das Maximum wurde auf 10m/s gesetzt.

6. Richtige Koordinaten selektieren

COSMO-REA6 verfügt über ein rotiertes Längengrad-Breitengrad Gitter mit verschobenem Pol. Auf skalare Werte hat dieses Gitter keinen Einfluss verglichen zu dem geographischen Gitter, auf dem die Auswertungen durchgeführt werden, da skalare Werte invariant gegenüber einer Rotation des Gitters sind. Allerdings gelten die (vektoriellen) Größen U, V, U_100 und V_100 nur auf dem rotierten Gitter, sollten also für Auswertungen (auf dem geographischen Gitter) nicht verwendet werden.

Folgende Informationen liefert der Befehl *cdo griddes*:

gridtype = lonlat	xsize = 848
gridsize = 698752	ysize = 824
xname = rlon	xnpole = -162
xlongname = longitude in rotated pole grid	ynpole = 39.25
xunits = degrees	xfirst = -28.403
yname = rlat	xinc = 0.05500118
ylongname = latitude in rotated pole grid	yfirst = -23.403
yunits = degrees	yinc = 0.05500122

Die entsprechenden geographischen Koordinaten (Längengrad, Breitengrad) sind unter den Variablennamen **RLON** und **RLAT** sowohl im .grb als auch im .nc File unter

<u>COSMO_REA6_CONST_withOUTsponge.grb.bz2</u> abgelegt. Die Variablen **rlon** und **rlat** im .nc file sind lediglich aus technischen Gründen enthalten und für die Auswertung der COSMO-REA6 Felder nicht zu beachten.

Um die Variablennamen weiterer Größen zu identifizieren können die folgenden Befehle genutzt werden:

```
wgrib -V myselection_CONST.grb mit wgrib [3]
grib_ls myselection_CONST.grb mit Grib Api [4]
ncdump -h myselection_CONST.nc mit ncdump
```

Die Koordinaten des selektierten Bereichs aus Bild 2 im nicht rotierten, geographischen System können mit folgendem Befehl ausgewählt werden:

cdo selindexbox, 300, 500, 350, 550 COSMO_REA6_CONST_withOUTsponge.grb
myselection_CONST.grb

Auch kann neben der Auswahl eines Teilbereiches lediglich ein einzelner Gitterpunkt selektiert werden. Die Koordinaten des Eckpunktes links unten in Abb. 2 (Index=300,350) werden beispielsweise mit folgendem Befehl in die Datei corner.grb gespeichert:

cdo selindexbox,300,300,350,350 COSMO_REA6_CONST_withOUTsponge.grb
corner.grb

Es ergeben sich die Koordinaten 45.165N° und 0.959E° für den Eckpunkt links unten in Abbildung 2.

Links:

- [1] <u>https://code.mpimet.mpg.de/projects/cdo/files</u>
- [2] <u>https://code.mpimet.mpg.de/projects/cdo/embedded/cdo_refcard.pdf</u>
- [3] http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html
- [4] <u>https://software.ecmwf.int/wiki/display/ECC/ecCodes+Home</u>