COSMO-REA6 Starting Example

(for use within UNIX/Linux)

- 1. Download,
- 2. Unpack,
- 3. Convert to netcdf,
- 4. Illustrate and
- 5. Cut model area
- 6. Find right coordinates

Using the example of hourly 10m u-component: U 10M.2D.199501.grb.bz2

1. Download

For UNIX/Linux access via console:

ftp ftp-rea.dwd.de

Login with user: anonymous, password: own email adress

cd pub/REA/COSMO REA6/hourly/2D/U 10M/

get U_10M.2D.199501.grb.bz2

2. Unpack

with bzip2 (this can take some second or minutes):

bunzip2 U 10M.2D.199501.grb.bz2

3. Convert to netcdf

The use of Climate data operators (CDO) is suggested, look at [1] and [2].

cdo -f nc copy U_10M.2D.199501.grb U_10M.2D.199501.nc

4. Illustrate

After a conversion to netcdf the reanalysis data can be represented with neview:

ncview U_10M.2D.199501.nc

Figure 1: Illustration of U_10M.2D.199501.nc with noview and the corresponding menu window

Concerning the rotated longitude-latitude field of COSMO-REA6 one can see the coastline of Africa (white line) instead of the European borders. The borders can be turned off during the *opts* function, which is highlighted in Figure 1. Here one can set the option *overlays* to *none*.

5. Cut out specific region

Cutting out a rectangle through the selection of only specific indices of whole:

cdo selindexbox,300,500,350,550 U_10M.2D.199501.nc myselection_ U_10M.2D.199501.nc

Figure 2: Illustration of myselection_U10M.2D.199501.nc by ncview; the coastlines are turned off and the color scheme was adapted due to the option *Range*. The maximum value is defined to be 10m/s

6. Find correct coordinates

COSMO-REA6 uses a rotated longitude-latitude grid with a shifted pole. This grid has no influence on scalar values compared to the geographical grid on which evaluations are performed, since scalar values are invariant to a rotation of the grid. However, the (vectorial) values U, V, U_100 and V_100 are only valid on the rotated grid, so they must not be used for evaluation on the geographical grid.

The following grid information is provided by *cdo griddes*:

gridtype = lonlat	xsize = 848
gridsize = 698752	ysize = 824
xname = rlon	xnpole = -162
xlongname = longitude in rotated pole grid	ynpole = 39.25
xunits = degrees	xfirst = -28.403
yname = rlat	xinc = 0.05500118
ylongname = latitude in rotated pole grid	yfirst = -23.403
yunits = degrees	yinc = 0.05500122

The non-rotated coordinates of COSMO-REA6 are saved in

<u>COSMO_REA6_CONST_withOUTsponge.grb.bz2</u> with the variable names **RLAT** and **RLON**. The variables **rlat** and **rlon** in the .nc file are only saved for technical reasons and don't need any further attention.

In order to identify further variable names, the following commands are helpful:

```
wgrib -V myselection_CONST.grb with wgrib[3]
grib_ls myselection_CONST.grb with Grib Api[4]
ncdump -h myselection CONST.nc with ncdump
```

The non-rotated, geographical coordinates of the selected area in figure 2 can be selected with the following command:

cdo selindexbox,300,500,350,550 COSMO_REA6_CONST_withOUTsponge.grb
myselection_CONST.grb

It is also possible to select only one grid point instead of a data field. The coordinates of the lower left corner of Figure 2 can be saved to corner.grb with following command:

cdo selindexbox,300,300,350,350 COSMO_REA6_CONST_withOUTsponge.grb
corner.grb

Links:

- [1] <u>https://code.mpimet.mpg.de/projects/cdo/files</u>
- [2] <u>https://code.mpimet.mpg.de/projects/cdo/embedded/cdo_refcard.pdf</u>
- [3] <u>http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html</u>
- [4] <u>https://software.ecmwf.int/wiki/display/ECC/ecCodes+Home</u>